1.Flink HistoryServer用途
HistoryServer可以在Flink 作业终止运行(Flink集群关闭)之后,还可以查询已完成作业的统计信息。此外,它对外提供了 REST API,它接受 HTTP 请求并使用 JSON 数据进行响应。Flink 任务停止后,JobManager 会将已经完成任务的统计信息进行存档,History Server 进程则在任务停止后可以对任务统计信息进行查询。比如:最后一次的 Checkpoint、任务运行时的相关配置。
2.部署Flink HistoryServer
1、创建 flink historyserver pvc,保存Flink作业归档数据。
[root@k8s-demo001 ~]# cat flink-historyserver-pvc.yaml #Flink Historyserver 持久化存储pvc apiVersion: v1 kind: PersistentVolumeClaim metadata: name: flink-historyserver-pvc # historyserver pvc名称 namespace: flink # 指定归属的名命空间 spec: storageClassName: nfs-storage #sc名称,更改为实际的sc名称 accessModes: - ReadWriteMany #采用ReadWriteMany的访问模式 resources: requests: storage: 1Gi #存储容量,根据实际需要更改 [root@k8s-demo001 ~]# kubectl apply -f flink-historyserver-pvc.yaml
2、配置flink historyserver,创建flink historyserver configmap
[root@k8s-demo001 ~]# cat flink-historyserver-conf.yaml kind: ConfigMap apiVersion: v1 metadata: name: flink-historyserver-conf namespace: flink annotations: kubesphere.io/creator: admin data: flink-conf.yaml: | blob.server.port: 6124 kubernetes.jobmanager.annotations: flinkdeployment.flink.apache.org/generation:2 kubernetes.jobmanager.replicas: 1 kubernetes.jobmanager.cpu: 1.0 $internal.flink.version: v1_13 kubernetes.taskmanager.cpu: 1.0 jobmanager.rpc.port: 6123 taskmanager.rpc.port: 6122 kubernetes.service-account: flink kubernetes.cluster-id: flink-historyserver kubernetes.container.image: flink-hdfs:1.13.6 parallelism.default: 2 kubernetes.namespace: flink taskmanager.numberOfTaskSlots: 2 kubernetes.rest-service.exposed.type: ClusterIP kubernetes.operator.reconcile.interval: 15 s kubernetes.operator.metrics.reporter.slf4j.interval: 5 MINUTE kubernetes.operator.metrics.reporter.slf4j.factory.class: org.apache.flink.metrics.slf4j.Slf4jReporterFactory jobmanager.memory.process.size: 1024m taskmanager.memory.process.size: 1024m kubernetes.internal.jobmanager.entrypoint.class: org.apache.flink.kubernetes.entrypoint.KubernetesSessionClusterEntrypoint kubernetes.pod-template-file: /tmp/flink_op_generated_podTemplate_17272077926352838674.yaml execution.target: kubernetes-session jobmanager.archive.fs.dir: file:///opt/flink/flink_history historyserver.archive.fs.dir: file:///opt/flink/flink_history historyserver.archive.fs.refresh-interval: 10000 historyserver.web.port: 8082 web.tmpdir: /opt/flink/webupload web.upload.dir: /opt/flink/webupload web.cancel.enable: false internal.cluster.execution-mode: NORMAL queryable-state.proxy.ports: 6125 state.checkpoints.dir: file:///opt/flink/checkpoints log4j.properties: | # Allows this configuration to be modified at runtime. The file will be checked every 30 seconds. monitorInterval=30 # This affects logging for both user code and Flink rootLogger.level = INFO rootLogger.appenderRef.file.ref = MainAppender # Uncomment this if you want to _only_ change Flink's logging #logger.flink.name = org.apache.flink #logger.flink.level = INFO # The following lines keep the log level of common libraries/connectors on # log level INFO. The root logger does not override this. You have to manually # change the log levels here. logger.akka.name = akka logger.akka.level = INFO logger.kafka.name= org.apache.kafka logger.kafka.level = INFO logger.hadoop.name = org.apache.hadoop logger.hadoop.level = INFO logger.zookeeper.name = org.apache.zookeeper logger.zookeeper.level = INFO logger.shaded_zookeeper.name = org.apache.flink.shaded.zookeeper3 logger.shaded_zookeeper.level = INFO # Log all infos in the given file appender.main.name = MainAppender appender.main.type = RollingFile appender.main.append = true appender.main.fileName = ${sys:log.file} appender.main.filePattern = ${sys:log.file}.%i appender.main.layout.type = PatternLayout appender.main.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n appender.main.policies.type = Policies appender.main.policies.size.type = SizeBasedTriggeringPolicy appender.main.policies.size.size = 100MB appender.main.policies.startup.type = OnStartupTriggeringPolicy appender.main.strategy.type = DefaultRolloverStrategy appender.main.strategy.max = ${env:MAX_LOG_FILE_NUMBER:-10} # Suppress the irrelevant (wrong) warnings from the Netty channel handler logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline logger.netty.level = OFF log4j-console.properties: | # This affects logging for both user code and Flink rootLogger.level = INFO rootLogger.appenderRef.console.ref = ConsoleAppender rootLogger.appenderRef.rolling.ref = RollingFileAppender # Uncomment this if you want to _only_ change Flink's logging #logger.flink.name = org.apache.flink #logger.flink.level = INFO # The following lines keep the log level of common libraries/connectors on # log level INFO. The root logger does not override this. You have to manually # change the log levels here. logger.akka.name = akka logger.akka.level = INFO logger.kafka.name= org.apache.kafka logger.kafka.level = INFO logger.hadoop.name = org.apache.hadoop logger.hadoop.level = INFO logger.zookeeper.name = org.apache.zookeeper logger.zookeeper.level = INFO # Log all infos to the console appender.console.name = ConsoleAppender appender.console.type = CONSOLE appender.console.layout.type = PatternLayout appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n # Log all infos in the given rolling file appender.rolling.name = RollingFileAppender appender.rolling.type = RollingFile appender.rolling.append = false appender.rolling.fileName = ${sys:log.file} appender.rolling.filePattern = ${sys:log.file}.%i appender.rolling.layout.type = PatternLayout appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n appender.rolling.policies.type = Policies appender.rolling.policies.size.type = SizeBasedTriggeringPolicy appender.rolling.policies.size.size=100MB appender.rolling.strategy.type = DefaultRolloverStrategy appender.rolling.strategy.max = 10 # Suppress the irrelevant (wrong) warnings from the Netty channel handler logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline logger.netty.level = OFF # Flink Deployment Logging Overrides # rootLogger.level = DEBUG [root@k8s-demo001 ~]# kubectl apply -f flink-historyserver-conf.yaml
检查
3、创建Historyserver服务
[root@k8s-demo001 ~]# cat flink-historyserver.yaml apiVersion: apps/v1 kind: Deployment metadata: namespace: flink labels: app: flink-historyserver name: flink-historyserver name: flink-historyserver spec: replicas: 1 selector: matchLabels: name: flink-historyserver template: metadata: namespace: flink labels: app: flink-historyserver name: flink-historyserver spec: hostAliases: # hosts配置 - ip: "172.16.252.129" hostnames: - "Kafka-01" - ip: "172.16.252.130" hostnames: - "Kafka-02" - ip: "172.16.252.131" hostnames: - "Kafka-03" containers: - name: flink-historyserver env: - name: TZ value: Asia/Shanghai image: flink:1.13.6 command: [ 'sh','-c','/docker-entrypoint.sh history-server' ] ports: - containerPort: 8082 volumeMounts: - name: flink-historyserver-conf mountPath: /opt/flink/conf/flink-conf.yaml subPath: flink-conf.yaml - name: flink-historyserver-conf mountPath: /opt/flink/conf/log4j.properties subPath: log4j.properties - name: flink-historyserver-conf mountPath: /opt/flink/conf/log4j-console.properties subPath: log4j-console.properties - name: flink-historyserver mountPath: /opt/flink/flink_history volumes: # 挂载卷配置 - name: flink-historyserver-conf configMap: name: flink-historyserver-conf - name: flink-historyserver persistentVolumeClaim: claimName: flink-historyserver-pvc # --- # kind: Service # apiVersion: v1 # metadata: # namespace: flink # name: flink-historyserver # spec: # type: NodePort # ports: # - port: 8082 # nodePort: 31082 # selector: # name: flink-historyserver # ingress按实际情况配置 --- apiVersion: v1 kind: Service metadata: labels: app: flink-historyserver name: flink-historyserver name: flink-historyserver namespace: flink spec: selector: app: flink-historyserver ports: - port: 8082 protocol: TCP targetPort: 8082 --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata: namespace: flink name: flink-historyserver annotations: nginx.ingress.kubernetes.io/default-backend: ingress-nginx-controller nginx.ingress.kubernetes.io/use-regex: 'true' spec: ingressClassName: nginx rules: - host: "flink-hs.k8s.io" http: paths: - pathType: Prefix path: "/" backend: service: name: flink-historyserver port: number: 8082 [root@k8s-demo001 ~]# kubectl apply -f flink-historyserver.yaml
验证:
访问Flink UI:
3.提交flink作业
1、编写提交作业的yaml
这里需要挂在Historyserver的pvc,并配置Historyserver的归档路径到pvc挂载路径
[root@k8s-demo001 ~]# cat application-deployment-checkpoint-ha-hs.yaml apiVersion: flink.apache.org/v1beta1 kind: FlinkDeployment metadata: namespace: flink name: application-deployment-checkpoint-ha-hs # flink 集群名称 spec: image: flink:1.13.6 # flink基础镜像 flinkVersion: v1_13 # flink版本,选择1.13 imagePullPolicy: IfNotPresent # 镜像拉取策略,本地没有则从仓库拉取 ingress: # ingress配置,用于访问flink web页面 template: "flink.k8s.io/{{namespace}}/{{name}}(/|$)(.*)" className: "nginx" annotations: nginx.ingress.kubernetes.io/rewrite-target: "/$2" flinkConfiguration: taskmanager.numberOfTaskSlots: "2" state.checkpoints.dir: file:///opt/flink/checkpoints high-availability.type: kubernetes high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory # JobManager HA high-availability.storageDir: file:///opt/flink/flink_recovery # JobManager HA数据保存路径 jobmanager.archive.fs.dir: file:///opt/flink/flink_history # JobManager 归档路径 historyserver.archive.fs.dir: file:///opt/flink/flink_history # Historyserver 归档路径 historyserver.archive.fs.refresh-interval: "10000" # Historyserver 文件刷新间隔 serviceAccount: flink jobManager: replicas: 2 # HA下, jobManger的副本数要大于1 resource: memory: "1024m" cpu: 1 taskManager: resource: memory: "1024m" cpu: 1 podTemplate: spec: hostAliases: - ip: "172.16.252.129" hostnames: - "Kafka-01" - ip: "172.16.252.130" hostnames: - "Kafka-02" - ip: "172.16.252.131" hostnames: - "Kafka-03" containers: - name: flink-main-container env: - name: TZ value: Asia/Shanghai volumeMounts: - name: flink-jar # 挂载nfs上的jar mountPath: /opt/flink/jar - name: flink-checkpoints # 挂载checkpoint pvc mountPath: /opt/flink/checkpoints - name: flink-log # 挂载日志 pvc mountPath: /opt/flink/log - name: flink-ha # HA pvc配置 mountPath: /opt/flink/flink_recovery - name: flink-historyserver mountPath: /opt/flink/flink_history volumes: - name: flink-jar persistentVolumeClaim: claimName: flink-jar-pvc - name: flink-checkpoints persistentVolumeClaim: claimName: flink-checkpoint-application-pvc - name: flink-log persistentVolumeClaim: claimName: flink-log-pvc - name: flink-ha persistentVolumeClaim: claimName: flink-ha-pvc - name: flink-historyserver persistentVolumeClaim: claimName: flink-historyserver-pvc job: jarURI: local:///opt/flink/jar/flink-on-k8s-demo-1.0-SNAPSHOT-jar-with-dependencies.jar # 使用pv方式挂载jar包 entryClass: org.fblinux.StreamWordCountWithCP args: # 传递到作业main方法的参数 - "172.16.252.129:9092,172.16.252.130:9092,172.16.252.131:9092" - "flink_test" - "172.16.252.113" - "3306" - "flink_test" - "wc" - "file:///opt/flink/checkpoints" - "10000" - "1" parallelism: 1 upgradeMode: stateless [root@k8s-demo001 ~]# kubectl apply -f application-deployment-checkpoint-ha-hs.yaml
作业提交之后,可以手动往Kafka 写入一些数据,然后关闭作业
转载请注明:西门飞冰的博客 » (5)Flink on k8s之historyServer